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Another Look at Long-Chain Branching 

R. V. MULLlKlN and GEORGE A. MORTIMER 

Monsanto Company 
Texas City. Texas 77590 

SUMMARY 

Long-chain branching can occur during radical polymerization and is 
especially important for polyethylene. An improved method of calculating 
the effect of long-chain branching on molecular weight distribution is pre- 
sented. This method uses a probability treatment. The results are more 
consistent with both kinetic theory and experimental data than the results 
of previous long-chain branching calculations. In contrast to previous cal- 
culations, the present work shows that gelation cannot occur from long-chain 
branching alone. 

INTRODUCTION 

Simultaneously, in 1953, Roedel [ I ]  suggested a mechanism for long- 
chain branching in polyethylene, Billmeyer [2] demonstrated its presence, 
and Beasley [3) presented a calculation based on long-chain branching to 
account for the broad molecular weight distribution of polyethylene. 
Beasley’s approach was general for any polymer that can branch due to 
intermolecular chain transfer, and was applied to polyethylene where long- 
chain branching plays an important role. Beasley’s approach has been ex- 
tended by Nicolas (41 to include certain kinetic steps which Beasley inten- 
tionally ignored in his idealized treatment, but the basic approach and con- 
clusions remained unchanged. 

There are, however, certain weaknesses in these approaches which lead 
to disagreement between calculation and experiment (which were accounted 
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I496 R .  V. MLILLIKIN AND G. A. MORTIMER 

for by postulating a shielding effect) and, in the limit, lead to a kinetically 
incorrect situation. 

This paper will present an improved calculation believed to avoid some 
of the pitfalls of the earlier approaches. The results are only slightly dif- 
ferent at low levels of branching from the results of Bcasley, but differ 
substantially at high levels of branching. Calculated molecular weight dis- 
tributions are much closer to the measure values and, in the limit, the 
calculation agrees with kinetic expectations. 

Assumptions and Definitions 

The same basic process assumptions made by Beasley are retained: the 
process is considered to take place in a well-stirred reactor with continuous 
feed and discharge and all process conditions constant 131. 

The algebraic symbols are defined as follows: 

kb = rate constant for long-chain branching 

kp 
kt = rate constant for bimolecular disproportionat ion 

= rate constant for propagation 

termination (termination by combination is assumed non- 
existent in this calculation) 

ks = rate constant for chain transfer t o  a transfer agent 

2fkdl = rate of initiation of new polymer chains by initiator radicals 

kc = over-all rate constant for radical scission reactions producing 
unsaturation 

[m] = monomer concentration 

[S] = chain transfer agent concentration 

[R] = free radical concentration 

[PI = polymer concentration 

x = number of monomer units (plus chain transfer agent or 
initiator fragments) in a straight chain chosen at random- 
this can be thought of as a primary chain 

primary chain 
= ith moment of the whole polymer 

= number of monomer units in the entire branch of the uth 
branch off the primary chain 

Mi,n = ith moment of polymer having n branch points on the 

Mi 

yu 
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LONG- CHA IN BRANCHING 1497 

- xn = number avepage degree of polymerization 

xw = weight average degree of polymerization 
M W D =  molecular weight distribution, X ,,,/Fn 

- 

p 

b 

f(yu) = a frequency function equal to the probability that a given 

= probability that one monomer unit is attached to another 
(as a result of straight-chain addition polymerization) 

= probability that there is a long-chain branch point on a given 
monomer unit in a polymer chain 

branch from a primary chain is size y 

Expressed in kinetic terms, 

and 

where 

D = kp[m] [R] t ks[S] [R] + 2fkdI 

The quantity 2kt [R]’ may be used instead of 2fkdI at steady state if 
the number of radicals exiting from the reactor is negligible. Note that an 
initiator fragment or a transfer agent fragment, when in the polymer chain, 
is taken as equivalent to a monomer unit. 

Comparing this terminology with that of Beasley, it can be seen that, 
very nearly, b = /3a of Beasley, and p = 1 - a of Beasley. 

Before commencing the calculations, some implicit assumptions should 
be identified. It will be assumed that a maximum of one branch point can 
occur on a single monomer unit. This restriction considerably simplifies the 
mathematical treatment. A mathematical conjecture will be made later show- 
ing how the solution can be generalized to accommodate more than one 
branch point per monomer unit and also more than one rate constant for 
branching, as would be needed to treat long-chain branching in polymers 
where all polymer hydrogens are not equivalent in their tendency to  be 
abstracted. As is the case for extensions of Beasley’s calculations, these 
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refinements and extensions to more general cases will not alter the major 
conclusions. 

At this juncture it may be appropriate to point out the differences be- 
tween the present approach and calculations published in earlier papers. 
The present derivation utilizes a single mathematical technique, arithmetic 
summation of discontinuous functions. The earlier approaches mixed the 
use of arithmetic summations and calculus integration of continuous func- 
tions. Further, in the present derivation, the summations embody a re- 
striction on the number of branches possible on a single monomer unit in 
the polymer. This restriction might have been 2, 3, 4, etc., but 1 was 
chosen for simplicity and later generalized. It is not clear that the mathe- 
matical technique employed earlier [3, 41 restricted the number of branches 
that can occur at a given site t o  the number that is chemically possible. 

Before commencing the calculations, it should be pointed out that the 
function f(yu) itself is not known, but it is known that 

m 

yuif(yu) = Mi, where i = 0, 1,  2, 

since branches chosen at random have the same probabilities p and b govern- 
ing their structure as is the case for the whole polymer. 

Derivations 

For a polymer whose structure is defined completely by the above 
probability terms for monomer addition in a straight chain and branching 
from a monomer unit, one can set up and solve the probability expressions 
for the zero, first, and second moments of molecular size. 

The zero moment equations for the polymer are: 

( 9 - l  - px) (1 - b)X-nb"(x) (x - 1) * . . (x - n t 1) (for > 1) M o , =  C 
n! 

(2) 

The zero moment equations have the solutions: 
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LONG-CHAIN BRANCHING 1499 

The first moment equations are: 

* (px-1 - px) (1 - b)X-"(b)n(x) (x - 1) . . * (x - n t 1) 

The first moment equations have the solutions: 

m 1 

The second moment equations are: 

W 

Mz,o = Z (x)'(pX-' - pX)(l - b)X 
1 
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Solutions for the second moment equations are: 

- [n’ t (1 t 3n) (pK1 - b) t (p)’(l - b)’ 

00 1 - p’ - b’ MZ = Z  M2,n=  
n=O (1 - p - b)3 

The degrees of polymerization and molecular weight distribution 
therefore are: 

- M2 - 1 -p’ - b 2  x w  = -  - 
M i  (1 - p  - b)’ 

Figure 1 is constructed from these equations to show the effect of long- 
chain branching on molecular weight distribution graphically. 

Analysis of the Results 

Comparing these results (below on the left) converted into the a and 
of Beasley, with Beasley’s original results (below on the right) which are 
the same as Nicolas’ results [4] when his p = 0, we see that there is agree- 
ment on Xn but not on Xw and MWD. 
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LONG- CHAIN BRANCHING 1501 

C z 

2 

b 

Fig. 1. Calculated effect of molecular weight distribution vs. branching 
using Eqs. (14) and (16). 

2 - a ( 1  + p z )  2 -20  MWD = z -  1 - 0  1 - 2 0  (19) 

There is a useful test of the consistency of these expressions with exist- 
ing theory on molecular weight distribution. If b is set to zero while p 
remains finite (or vice versa), Eqs. (1 4), (1 S), and (1 6) simplify to the most 
probable distributions for linear polymers as described by Flory [S] , which 
indeed they should if they are correct. Although p and b .are not exactly 
equatable to a and 0, it is still true that 0 is zero and a is finite if there is 
propagation and no branchmg. It can be seen that setting 0 to zero in 
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LONG-CHAIN BRA NCHlNG 1.503 

Beasley’s and Nicolas’ equations (18 and 19 of this paper) does not give 
Flory’s expressions for the most probable values of X w  and MWD in a 
linear polymer. Numerically, they are close if a is very small, but the fact 
that they are not exact in the absence of branchmg is, we feel, a weakness 
in the previous calculations and raises the question of how much additional 
error is introduced when p is not zero. 

A different limit on MWD is predicted in the two different sets of equa- 
tions. In  this connection, it is significant to note that the number of 
molecular chain terminations must be greater than the number of branch 
points, following the chemistry given under the assumptions for the calcu- 
lations. This is true because the mechanism for creating a branch site 
involves a molecular chain termination of the attacking radical. If molecu- 
lar terminations also occur by other mechanisms (chain transfer to monomer 
or transfer agent, kinetic chain termination by disproportionation, etc.) then 
the probability of molecular chain termination must be greater than the 
probability of branching, or ( 1  - p) > b. Mathematically, X = (1  - p - b r  ’ 
cannot be truly infinite under the chemical mechanisms assumed. It can 
similarly be seen that Xw and MWD cannot become infinite. Indeed, the 
new expressions derived in this paper predict MWD will reach a finite 
maximum value at b = p for any value of Xn, whereas the previously pub- 
lished MWD expressions become discontinuous at 0 = 0.5, at  which point 
they predict MWD to  be infinite. 

It is recognized that other polymerization mechanisms can exist which 
may correctly predict a truly infinite molecular weight [ S ]  , but these were 
not included as permissible reactions in the derivations under discussion 
here. 

Generalization of the Results 

Equations (1 4) through (1 6) have been rigorously developed by exact 
solution. It has thus been shown that there are no interaction terms in 
which p and b are multiplied. This seems reasonable. Although the 
probabilities p and b are related such that p -t b < 1 by virtue of their 
definitions, the actual branching and propagation reactions do not depend 
upon each other in any manner (assuming all radicals have equal reactivity). 

reactions of probabilities b l  and b z ,  we believe from the form and nature 
of the previous solution that it can be conjectured as given by expressions 
(20) in Table 1 .  We have not demonstrated methematically that third-order 
terms (pblb  terms) are absent, but we believe that, in a real situation 
controlled by chemical kinetics in which the various reactions take place 

Although we have not rigorously solved the case of two branching 
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BEASLEY EOUATION 
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Fig. 2. Comparison of calculated and experimental molecular weight dis- 
tributions. The data points are from Beasley’s Fig. 4. 

independently of one another and in which there are known to be no 
second-order terms in which different probabilities are multiplied, third- 
order terms will also be absent. 

The solution may then be further generalized as shown in Table 1. 
Expressions (21) follow directly from (20). Expressions (22) would apply 
to polyethylene where there are four transferable hydrogen atoms per 
monomer unit, all of which should be equally reactive. The most general 
case is given by expressions (23) and should apply to any polymer formed 
by radical addition processes. 

Predictions for polyethylene using expressions (22) are plotted in Fig. 2 
versus Beasley’s equation and the experimental data reported by Beasley. 
It is seen that agreement is acceptable without postulating any shielding 
effects. 

is also possible. Such possibilities will be dealt with at another time. 
The inclusion of other kinetic steps, especially combination termination, 
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